A Formalism for Ising Model Cumulant Green Functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cumulant ratios and their scaling functions for ising systems in a strip geometry

We calculate the fourth-order cumulant ratio (proposed by Binder) for the two-dimensional Ising model in the strip geometry Lxinfinity. The density-matrix renormalization-group method enables us to consider typical open boundary conditions up to L=200. Universal scaling functions of the cumulant ratio are determined for strips with parallel as well as opposing surface fields. Their asymptotic p...

متن کامل

1 PI Green functions in the world - line formalism

We demonstrate, at the one-loop level, how the theory-independent part of proper N-point Green functions at finite temperature and chemical potential can be formulated in the world-line formalism, where φ 3 theory, photon scattering, effective potential in a constant magnetic field, π 0 → 2γ decay are all described in a unified way. We then derive various useful formulae and check their consist...

متن کامل

Ising Model Scaling Functions at Short Distance

I will sketch a proof that the short distance behavior of the even scaling functions for the Ising model that arise by taking the scaling limit of the Ising correlation functions from below the critical temperature is given by the Luther–Peschel formula [6] (see below). The fact that the Luther–Peschel formula is consistent with conformal field theory insights into the correlations for the larg...

متن کامل

Critical Binder cumulant of two–dimensional Ising models

The fourth-order cumulant of the magnetization, the Binder cumulant, is determined at the phase transition of Ising models on square and triangular lattices, using Monte Carlo techniques. Its value at criticality depends sensitively on boundary conditions, details of the clusters used in calculating the cumulant, and symmetry of the interactions or, here, lattice structure. Possibilities to ide...

متن کامل

Critical Binder cumulant in two–dimensional anisotropic Ising models

The Binder cumulant at the phase transition of Ising models on square lattices with various ferromagnetic nearest and next–nearest neighbour couplings is determined using mainly Monte Carlo techniques. We discuss the possibility to relate the value of the critical cumulant in the isotropic, nearest neighbour and in the anisotropic cases to each other by means of a scale transformation in rectan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Progress of Theoretical Physics

سال: 1973

ISSN: 0033-068X

DOI: 10.1143/ptp.49.453